Oral session 7 - Power Conditioning, Linear Transformer Drivers (LTDs), Pulse Forming Lines and Transformers - Session Chair: Weihua Jiang

<table>
<thead>
<tr>
<th>Date</th>
<th>Id</th>
<th>Title</th>
<th>Presenters</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>350</td>
<td>Conceptual design of a 900-TW pulsed-power accelerator driven by impedance-matched Marx generators</td>
<td>William Stygar</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>10:30</td>
<td>12</td>
<td>A Fast Rise Time Air Insulated Linear Transformer Driver for High Energy Density Physics</td>
<td>Casey Rodgers</td>
<td>University of New Mexico</td>
</tr>
<tr>
<td>10:45</td>
<td>179</td>
<td>Pulse Width Lengthening Technique for Compact Pulsed Power Generator</td>
<td>Zicheng Zhang</td>
<td>National University of Defense Technology, China</td>
</tr>
<tr>
<td>11:00</td>
<td>184</td>
<td>Experiments on the Clam Shell Magnetically Insulated Transmission Line (CSMITL2) on Saturn</td>
<td>Ben Ulmen</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>11:15</td>
<td>188</td>
<td>Square Pulse LTD Stage Based on Simplified Pulse Forming Network</td>
<td>Zhou Liangji</td>
<td>Institute of Fluid Physics, CAEP</td>
</tr>
<tr>
<td>11:30</td>
<td>357</td>
<td>Status of Linear Transformer Driver Facilities for High Energy Density Physics Experiments at the University of Michigan</td>
<td>Ryan McBride</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>11:45</td>
<td>213</td>
<td>A bipolar, high repetition rate nanosecond pulse generator based on Blumlein-line and TLT</td>
<td>Changhao Bian</td>
<td>Chongqing University</td>
</tr>
<tr>
<td>12:00</td>
<td>335</td>
<td>Power Amplification with Static and Dynamic Load Current Multipliers</td>
<td>A.S. Chuvatin</td>
<td>Ecole Polytechnique, France</td>
</tr>
<tr>
<td>12:15</td>
<td>364</td>
<td>Impedance matching of pulsed power accelerator for megajoule-class dynamic-material-physics experiments</td>
<td>Jiang Jihao</td>
<td>Institute of Fluid Physics, CAEP</td>
</tr>
<tr>
<td>Date</td>
<td>Id</td>
<td>Title</td>
<td>Presenters</td>
<td>Affiliation</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>--</td>
<td>------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>10:00</td>
<td>54</td>
<td>Remote generation of intense pulsed electric fields in water</td>
<td>Peter Senior</td>
<td>Loughborough University</td>
</tr>
<tr>
<td>10:15</td>
<td>175</td>
<td>AN INVESTIGATION OF PULSED FILAMENT CURRENTS IN DIELECTRIC BARRIER DISCHARGES WITH MESHER ELECTRODES</td>
<td>Tao Wang</td>
<td>University of Strathclyde</td>
</tr>
<tr>
<td>10:30</td>
<td>252</td>
<td>Investigation of Underwater Shock Wave Intensity in Different Electrical Breakdown Discharge Modes</td>
<td>Siwei Liu</td>
<td>HUST</td>
</tr>
<tr>
<td>10:45</td>
<td>320</td>
<td>Marx Generators for Electroporation Devices</td>
<td>Martin Sack</td>
<td>Karlsruhe Institute of Technology</td>
</tr>
<tr>
<td>11:15</td>
<td>200</td>
<td>PULSED CORONA DISCHARGE FOR HYDROGEN PEROXIDE PRODUCTION</td>
<td>yiyi zhao</td>
<td>University of Strathclyde</td>
</tr>
<tr>
<td>11:30</td>
<td>280</td>
<td>A testbed for an augmented railgun to be powered by superconducting coils</td>
<td>Markus Schneider</td>
<td>ISL</td>
</tr>
<tr>
<td>11:45</td>
<td>88</td>
<td>Measurements on Combined 12.5/17.5 kV Prototype Inductive Adder for the CLIC DR Kickers</td>
<td>Janne Holma</td>
<td>CERN</td>
</tr>
<tr>
<td>12:00</td>
<td>68</td>
<td>Advantages of pulsed power driven transient plasmas.</td>
<td>Guus Pemen</td>
<td>Eindhoven University of Technology</td>
</tr>
<tr>
<td>Time</td>
<td>Id</td>
<td>Title</td>
<td>Presenters</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>10:00</td>
<td>43</td>
<td>Fusion Reactor Based on the Inductively Driven Metal Liner Compression of an FRC Target</td>
<td>John Slough</td>
<td>University of Washington</td>
</tr>
<tr>
<td>10:30</td>
<td>220</td>
<td>Axial magnetic field injection on scaled-down MagLIF platforms</td>
<td>Pierre Gourdain</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>10:45</td>
<td>108</td>
<td>Isentropic Compression Experiments on the PTS Facility: Numerical Design, Simulation and Analyses</td>
<td>Yang Zhang</td>
<td>IAPCM</td>
</tr>
<tr>
<td>11:00</td>
<td>217</td>
<td>ICE-16, A DEMONSTRATOR FOR AN UPGRADE OF GEPI DRIVER, TOWARDS ISENTROPIC COMPRESSION EXPERIMENTS AT 6 MA, 1 MICROSECOND LEVEL</td>
<td>Martial Toury</td>
<td>CEA Gramat</td>
</tr>
<tr>
<td>11:15</td>
<td>248</td>
<td>CONDENSED MATTER, ELECTROMAGNETIC, LINER-IMPACTORS FOR SHOCK WAVE AND WARM DENSE MATTER APPLICATIONS</td>
<td>Robert Reinovsky</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>11:30</td>
<td>116</td>
<td>PHELIX Driven Study of the Richtmyer-Meshkov Instability in Tin in Cylindrical Geometry</td>
<td>Christopher Rous culp</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>12:00</td>
<td>112</td>
<td>FLYER ACCELERATION BY MAGNETIC PRESSURE ON ANGARA 5-1 INSTALLATION</td>
<td>Svetlana Tkachenko</td>
<td>State Research Center of Russian Federation, Troitsk Institute for Innovation and Fusion Research</td>
</tr>
<tr>
<td>12:15</td>
<td>167</td>
<td>Advances in Electromagnetic Flux-compression Research</td>
<td>Zhongyu Zhou</td>
<td>Institute of Fluid Physics, Chinese Academy of Engineering Phy</td>
</tr>
<tr>
<td>Date</td>
<td>Id</td>
<td>Title</td>
<td>Presenters</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>15:00</td>
<td>124</td>
<td>Electronic steering of radiation beam by phase control in the arrays of uncoupled nonlinear transmission lines and Cherenkov-type HPM oscillators</td>
<td>Vladislav Rostov</td>
<td>Institute of High Current Electronics</td>
</tr>
<tr>
<td>15:30</td>
<td>144</td>
<td>Analysis of Nonlinear Gyromagnetic Line Operation Using LLG Equation*</td>
<td>Jose Rossi</td>
<td>National Institute for Space Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Presented by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Edl Shamiloglu</td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td>373</td>
<td>A Battery-Powered, 60-kJ, 6-RPS Rep-Rate Pulsed Power System</td>
<td>Brett Huhman</td>
<td>US Naval Research Laboratory</td>
</tr>
<tr>
<td>16:15</td>
<td>36</td>
<td>HV Cables for Remotely Located Pulsed Magnetron Applications</td>
<td>Joe Hutley</td>
<td>e2v</td>
</tr>
<tr>
<td>16:30</td>
<td>141</td>
<td>Design of a 700-kV Modulator for High-Power Radiofrequency Sources above 200 GHz</td>
<td>Alessandro Lampasi</td>
<td>ENEA</td>
</tr>
<tr>
<td>16:45</td>
<td>223</td>
<td>Development of a solid-state high-voltage switch device for an insulation oil-filled klystron modulator</td>
<td>Takahiro Inagaki</td>
<td>RIKEN SPring-8 center</td>
</tr>
<tr>
<td>17:00</td>
<td>347</td>
<td>AN/TPS-43/70/75 Transmitter Modernization Kits</td>
<td>Michael Kempkes</td>
<td>Diversified Technologies</td>
</tr>
<tr>
<td>17:15</td>
<td>42</td>
<td>Research of compact repetitive pulsed power system based on Marx generator</td>
<td>Shirong Hao</td>
<td>Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP</td>
</tr>
</tbody>
</table>
Date | Id | Title | Presenters | Affiliation
--- | --- |--|--------------------|----------------------------------
15:00 | 337 | Direct observation of electrothermal instability structures in the skin layer of an intensely Ohmically heated conductor | Thomas Awe | Sandia National Laboratories
15:15 | 77 | Results of comparison between underwater explosions of Cu and Al wires and investigation of symmetry of a shock wave generated by a cylindrical wire array explosion | David Yanuka | Technion - Institute of Technology
15:30 | 80 | Preconditioned wire array Z-pinch driven by a double-pulse current generator | Jian Wu | Xi’an Jiaotong university
15:45 | 78 | Generation of cylindrically convergent shockwaves in water on the MACH facility | Simon Bland | Imperial College London
16:15 | 122 | Recent progress in implosion of a quasi-spherical shock waves and x-ray imaging of exploding wires | Mikhail Nitishinskiy | Technion - Institute of Technology
16:30 | 146 | Cygnus Performance on Five Subcritical Experiments | John Smith | Los Alamos National Laboratory
16:45 | 212 | Magnetic-field evolution in Z-pinch implosion with preembedded axial magnetic field | Dmitry Mikitchuk | Weizmann Institute of Science
17:00 | 86 | OVERVIEW OF THE EXPERIMENTAL DATA ON THE USE OF A VACUUM ARC DISCHARGE FOR Z-PINCHES | Alexander Rousskikh | Institute of High Current Electronics
17:15 | 50 | Experimental Platform Development for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator | George Laity | Sandia National Laboratories

<table>
<thead>
<tr>
<th>Date</th>
<th>Id</th>
<th>Title</th>
<th>Presenters</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00</td>
<td>74</td>
<td>Solid State Spark Gap and Ignitron Replacements</td>
<td>John Waldron</td>
<td>Silicon Power</td>
</tr>
<tr>
<td>15:30</td>
<td>214</td>
<td>HIGH-VOLTAGE PICOSECOND-RANGE AVALANCHE SWITCHING OF SEMICONDUCTOR STRUCTURES WITHOUT PN-JUNCTIONS</td>
<td>Pavel Rodin</td>
<td>Ioffe Institute, Russian Academy of Sciences</td>
</tr>
<tr>
<td>15:45</td>
<td>355</td>
<td>The Progression of Silicon Carbide Power Devices Under The Army’s High Voltage Power Technology Program</td>
<td>Miguel Hinojosa</td>
<td>Army Research Laboratory</td>
</tr>
<tr>
<td>16:00</td>
<td>227</td>
<td>Study on the high-power semi-insulating GaAs PCSS with quantum well structure</td>
<td>Chongbiao Luan</td>
<td>Institute of Fluid Physics, CAEP</td>
</tr>
<tr>
<td>16:15</td>
<td>326</td>
<td>Narrow Pulse Evaluation of 15 kV SiC MOSFETs and IGBTs</td>
<td>Stephen Bayne</td>
<td>Texas Tech University</td>
</tr>
<tr>
<td>16:30</td>
<td>203</td>
<td>INVESTIGATION OF FAST THYRISTOR SWITCHING MODULES TRIGGERED BY DIRECT OVERHEAD IGNITION</td>
<td>Rainer Bischoff</td>
<td>French-German Research Institute of Saint-Louis (ISL)</td>
</tr>
<tr>
<td>17:00</td>
<td>25</td>
<td>Silvaco-based evaluation of 10 kV 4H-SiC MOSFET as a solid-state switch in narrow-pulse application</td>
<td>Bejoy Pushpakaran</td>
<td>Texas Tech University</td>
</tr>
</tbody>
</table>